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ABSTRACT

In this paper we extend known results on cardinal L—spline interpolation to

include piecewise solutions of any real constant coefficient differential opera-

tar. We apply our results to spline interpolation on the circle and thus unify

and extend earlier work on this problem.
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SIGNIFICANCE AND EXPLANATION

Signal processing has wide application in engineering and science. An

important mathematical aspect of this field is the reconstruction of a function from

its values at the integers. This interpolation problem may be solved in various

ways e.g., Whittaker cardinal series, or moving averages, as with local polynomial

interpolation, or with spline functions with an infinite number of knots.

In this report we enlarge the class of spline function methods which may

be used in interpolation. These splines are piecewise smooth solutions of some

prescribed constant coefficient differential operator. In this report we allow for

periodic solutions to the differential operator, that is, for complex zeros in the

associated characteristic polynomial.

In addition to their usefulness in interpolating a function at all the in-

tegers, our results also apply to spline interpolation on the circle. Our appli-

cation in this regard extends and unifies previously known results.
a

I
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The responsbility for the wording and views expressed in this descriptive summary
lies with NRC , and not with the authors of this report.
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SPLINE FUNCTIONS ON THE CIRCLE. CARDINAL

- L—SPLINES REVISITED

Charles A. Micchelli and A. Sharma

. 
(Dedicated to Professor I. J. Schoenberg on his 75th birthday.)

F -

1. Introduction. Although the literature on splines has grown vastly during the last decade

(lii , the study of polynomial splines on the circle seems to have suffered neglect. The first

to study the subject in depth seem to be Ahlberg, Nilson and Walsh [11. Almost at the same

time I. J. Schoenberg (8] studied the problem of interpolation at the roots of unity by

splines and its relation to quadrature on the circle. For discrete polynomial splines on the

circle we refer to t5]. M. Golomb [3] also considers interpolation by a class of “spline”

functions in the complex plane but his point of view is based on minimum norm properties of

spline functions . Perhaps the reason for this neglect may be attributed to the fact that one

can pass from the circle to the line by means of the transformation z -* exp 2irix. This changes

the problem on the circle into periodic interpolation on the line with the difference that

instead of interpolation by piecewise polynomial , we now consider piecewise exponential poly-

nomials with complex exponents.

I . Recently J. Tzimbalario (131 has brought out the close affinity of the problem of cardinal

trigonometric interpolation and that of interpolating at the roots of unity on the circle and

-
. has given a unified treatment using the ideas of cardinal L—splines due to C. Micchelli [61 .

The object of this note is to bring this affinity into better perspective by considering

~
- -  ]t ~. piecewise functions of the form ~ c z ~~ which is suggestive of the M~intz approximation• o

- -S theorem (D. J. Newman (71). Such polynomials have been termed “incomplete” polynomials by

* G. G. Lorentz. In this case we are led to investigate cardinal L—splines with complex exponents

occuring in conjugate pairs. Our result in this context extends some of the results of (61

which treats L-splines with real exponents.

The possibility of such an extension was first envisaged by Schoenberg ((9( p. 274) and

later investigated by Tzimbalario and Sharma (121 for the case of trigono~~tric splines. Our

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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treatment is based upon ideas from (6) ~:d [93. It does not require, as in [131, a lemma of

Ahlberg, Nilson and Walsh concerning the sign of Re p(z) on the locus In p(z) 0 for a

polynomial with real negative zeros. (See (13) for its precise formulation)

In Section 2 we formulate the interpolation problem on the circle and state our main re-

sult. In Section 3 we provide a necessary and sufficient condition for the solution of

the interpolation problem. Section 4 is devoted to some formulae from cardinal L-splines and

their relationship to interpolation on the circle. Here we formulate in two different

ways the unicmeness criterion of Section 3. Section 5 deals briefly with the deriva-

tion of the B—spline representation. In Section 6 we obtain results about the zeros of

cardinal L—spline with complex exponents thereby extending some of the results of [6]. Section

7 deals with a proo f of Theorem 1 of Section 2. We turn to an application of these results to

quadrature in Section 8 where we also determine the generalized monospline of least L -norm .

2. Statement of the Problem and the main result:

Let U denote the unit circle zi = 1 and let n, k be positive integers k > n > 1.

Let A = {A
0 

< < ...< A )  be a set of n + 1 integers which is a subset of CO . l,...,k—l).

We shall denote by the class of polynomials P(z) given by

(2.1) P(z) = ~ c z
V

Let w = e15 (cz = ~~-) be the kth root of unity . We shall consider the class S~ n~~ 
S) of

A-splines S(z) defined by the following two conditions:

Ci ) S(z) C
n_l

(U)

(ii) S(z)I A 
= P (z) ~ 

~A ’ 
V 0, l,...,k—l

where A denotes the arc of the circle ~~~ 
~3

V~~~ )• We can now formulate the

4,
Problem. Let ~ = e~~~

T
, 0 r < 1 be a point on the circle. For what choice of k, A, t 4

does the interpolation problem (I.p):

(2.2) S(~’w 3 ) = W . ,  j  0, 1 , . . .  ,k 1

• have a unioue solution 3 ‘ .~~~ 7

— 2 —
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For a history of the problem and for an elegant solution thereof when It = {o, 1,... ,n—l}

we refer to [8]. We are able to solve the problem only when A~ + A~_~ is independent of j.

‘-. We shall prove

Theorem 1. Let 0 < A <  A ... < A < k—i be integers such that A . + A . is independent of0 1 n—  ) fl J

j ( j  = 0, 1,... ,n) then the I.P has a unique solution except when A0 
+ A + k is even and

either of the following two cases holds:

I. t = 0 and n is an even integer,

II. T = and n is an odd integer

We get more information from

Theorem 2. In each of the cases of non—uniqueness in Theorem 1, the I.P admits a solution

S(z)  c S if and only if satisfy the relation

(2.3) 
k~1 —hj 

~~~. = 0, h = (k + A
0 + A )/2

3. A Uniqueness criterion for I.P.

We begin with

Lemma 1. For every inteqe~ r, 0 < r < k—i there exists a non—trivial solution 5 (z) € S

(unique up to a multiplicative constant) which satisfies

(3.1) 5
rt
~~~ 

= 
rS ( )  , z € U

The functions S
e,.. .,S~~1 form a basis for S.

proof. It is easily seen that the conditions

(3.2) ~
j P~~ (w) = u

r P~~~ (1), j = 0, 1,.. .,n-l

determine up to a constant a unique P € iT .~. When r ~ A,  we may choose the normalization

(3.3) ~~ ~(n) 
~~ - 

r ~(n) (1) = 1

and for r ~ A. P(z) ~
r satisfies (3.2). Clearly P may be extended from the arc (1, u) S

to the unit circle by means of (3.1) and the resulting extension S (~~) is in [~. The linear

independence of S
e... •5k 1  follows directly from (3.1) . We now show that these functions

span

— 3 —
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To this end, let S be any element of S.  Then

S = ~~ ~~~~ , ~~~ ( z )  = 
~ k~ 1 

w
_Vl

S(w~z) .

Since S (wz) = w’
~ ~~( z )  , the first half of Lemma 1 implies the existence of constants d

such that ~ Cs) = d S (z). This proves that S , S ,...,S form a basis for S.
V V V  0 1 k—i

Lemma 2. The I.P has a unique solution in S if and only if S
~~

(
~~

) + 0, v ~ A.

Proof. Let S = 

k~l 
d S .  Then S(~w~) = 0 , j = 0, l,...,k—l if and on).y if d

~
S
~
(
~
) = 0

for V = 0, 1,. ..,k—1. Since S(~ ) = i)~~ + 0 for v € A , the lemma is proved.

Note that if S(~b) + 0, then S (z)/S (iJ) interpolates z~
’ at ~w 7 ( j  = 0 , 1 k—i) .

4. Properties of An(x;AT) , T {t
01...t0

}.

Cardinal L-splines are related to a given differential equation

(4.1) p~~1(D)y = 11(0 — t
~
)y = 0, 0 =

where T denotes the zero set of p
÷1~x~ . On each interval ( v ,  v#l), v an integer , the

L—splines are piecewise exponential polynomials, i.e., a solution to (4.1) but globally in

C~~
1(R) . Let eT = {et t € T} and let A (x;AT) , A ~ e

T be the unique element of the form

c e which satisfies0 V

(4.2) A~
’
~~(l;AIT) A A~

”1 (0;AlT) + S~~ , v = 0 , 1 n

We shall write A
n(x;A) for brevity when there is no ambiguity. A (x; A) is a rational func-

tion in A and is an exponential polynomial in x. We list below some of the known properties

of A (x;A) . (See [6) where they are given for T real , but these algebraic properties hold

also for T complex):

(a) The extension of A (x;A) from 10 ,13 to ~ by the ec’uation

• (4.3) A (x + 1;~ ) = A (x;~~), x P
n n

is an L—spline.

~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
,~~~~~ _ __ __
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(b) On [0, 1],

(4.4) A (x;A) = (t0, 
t
1
,. . . ,t)

where (t0
,. ..t ]f(t) denotes the divided difference of f at the nodes t0

,.. .t with re—

spect to the parameter t.

(c) If A = jA I e~
t
~, ~~~ < u < IT , = ].n I X  + i(u + 2 1tL) ,t = 0, ± 1, ± 2,..., then

= (x— l) 6 2niR.x
(4. 5) A (x ; A) ~ e AX~

l ~ e 
~~

-: 
n 

-= -
~~ 

9n+1 ~

S (d) If the zeros of r’n+l~~~ 
are symmetric about the origin, i.e., T = —T , then

(4 . 6) An
(l_ x ; A I T )  = (_ 1)

~~~
1A

~
1An

(x ;A T)

If we set

n ~• (4. 7) 11
n~~~~~~~

T) = 11 ( A ; x )  = r (A)A (x;XT), r(X) f l ( e  v_ A )

0

then ~~(X;x) is a polynomial of degree n ir~ A , if x € (0, 1) and of degree n—i if •

= 

We now choose T = isA where A = {X0 A )  Then for A 4 eT

(4.8) A (x;A) = [isA0
,... ,isA ) -

~~~
---—

e — A

- 
- Choose A e~

5
~ = ~

r r 4 A so that in (4 .5)  = i(rcT + 2,~~) , and set

(4.9)  A (z;w
n A) = A (x ;w r ) ,  z = e~~

I€

- • Then from (4.5)  we have for z € A0

ks+ r
(4. 10) A (z ; w r A) ~_ r~~ 53

_ n l  
~ 

Z

fl (ks+r—A
V 0

and because of (4 .3 ) , A ( z ; w f l A )  . S and satisfies

—5—
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( 4.11) A Z w 1
~
•

A) = 
r A ( z ;w r A)

According te Lemma 1 we have

= A Cs W
r It)

When A = (0, 1,... ,n—1 }, 5r has been called an r—f lower by Schoenberg [8) in view of its

rotational symsetry . In this case on using (4.8) with ~ = and taking r = n+l we get

except for a non—zero constant factor a simpler derivation of formula (6.17) in (8] which

gives the polynomial component of an r—f lower on the arc A0.

Using the above formulae we now reformulate Lemma 2 in a more useful form.

Lemma 3. The I.P is solvable if and only if one of the follow~ng (equivalent) conditions is

satisfied:

(4. 12) m
n

r T hj a M ~ 0, r 4 A , i e [0,1)

= ks+r4, 1ST
(4.13) Nr ~ n 0, r 4  A , 4’ = e

f l (ks+r..A)
v=0

5. 8—splines for S.

Condition (4 .12) above is reminiscent of Schoenberg ’s approach in [8) for

A = (0 ,  l , . .., n— l )  and may be derived in a similar fashion from the B—spline representation

for S(z)  € S. To this end we define the polynomial 
~A
(z) € 11A by

A A A0 1 nz z .... z

= 1 1 ... . 1 v ( A 0 ,A 1,.. • A n_ i )

A A . ... A0 1 n

A n—i A
n_ i 

A n 1
0 1~~~~~~ n

where V[A ,.. . , A I denotes the Vandermondian. ~ (z) has the property that the coefficient
A 

n-

of  z n is unity and that p~”~~(l)  = 0, v = 0 , l,...,n—l . With these polynomials we can

easily form the B-splines M
A
(s) for the class S. We can also show as in (8) that M

A
(z)

has the support U A. and that every S(z) S can be written uniauely in the form• 4 i=O ‘

S(z) = a M A
( z w )

I -6-

I
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where on the arc A .  we have

-
• 

. 
MA
(z) = 

~ 
d cP

A Czw ”)+, j = 0,1...

where the coeff icients d are given by the identity

k n —A
~ d x V = 1 1 ( x _ w V )
O V 0

A A
When n = 1. it is easy to see that A = (A

0,X 1). ~~~~ 
= z 1 

- z 0 and
‘ 

d0 + d1x + d2x2 
— c(x — ~~~~°) ( x  — w

1
~) .  Also in this case

—A 1—A 0 A1 A~
w (z — z  ) ,  z e A 0

A —2 A  A — 2 A

M
A
(z) = —z 1w ~ + ~ 

o
~ 

o z € A1

0 elsewhere

If we define convolution f * g by

f * g(~ ) f f (z ( 1) g ( ~ ) ~~

A
then we can see that NA

(S) = M
C X I  

* M
f x }  ~~~ • ~ M{A

n
} where M

C X I  
= z on A0 and 0

elsewhere.

• • 

- 
The Fourier series for MA

(z) is given by

(5.1) MA
(z) :~t ~ b z ~

where

-

. , 

( ~ 
A~-~

b = lI~~~ ~~~~~~~~ p 4 A
£=O( 5.2)

A L
_A 

V
b =

~~~~~~ -~~- 11 w __2~i , p = A  c I t
A k i A — A  V

~~v L v

k-l
Since (M ~ (~ w1) ) Q is a periodic sequence, we write

I

- 
- - •

~~~~~~~~~~~~~~~~~ - -~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~3
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k-i
M A (*w3 ) = ~ w~

’3 , j = 0, 1,... ,k—l
V=0

so that

= ~~~~ M~ (4,w~)w
V3 , v = 0, 1,...,k—1

Using (5.1) we have

= K~~ ~~~~~~~~~ K a non zero constant.

For V € A say v = A , we have from (5 .2)

r
b + O

For V 4 A , we get from (5.2),

n A - v
IT ( l w ~~ ) N

L=O V

where 
• 

—

(5.3) 
• = —,ç

‘ ( v+ks—A~ )
• L=o

Following the reasoning in Schoenberg (8) we would be led to another derivation of (4 .12) of

Lemma 3.

A direct examination of (4.13) of Lemma 3 in the general case seems to be difficult .  In S

the following Section we prepare the ground for proving Theorem 1 by using (4.12) .

6. Zeros of fl n~~~~~
T) T = {t

0
, t

1
, . . . ,t } .

If T is real the properties of the zeros of 11n~ ”~~~ 
are known (61 . When T is corn—

n
plex but Pn+i (X) = f l (x_ t

~
) is real, we can still prove

0 
.

Lemma 4. If the polynomial p~~ 1(x) is real with tm t . < It , then for any A < 0 , the

exponential polynomial TI (A ; x )  has exactly one simple zero in (0 ,1). 4n 
—

Proof. Observe that if (D—c *) (D— a) g = 0 with tm a < w , then g(x) can have at most one

zero in (0,1] .

-8-

~~~.E ~~~~~~ ‘ ~~~~ 4 ~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



kssTmling that 
~~~~ 

has a complex zero a , it follows from the fact that ~Im ~~~ < it

that

/

(6.1) Pn+i (D) — CD—a) (D—u )h(D)

with

( h(D) = D~~1 D~_2 D~D1
(6.2)

D~ f w
1 

D(w~’f) .  Wj  > O~ x ~ (0, 1] .

- • The existence of a decomposition as in (6.2) follows from the identities (D—t)y etaD(e~~~ y)

and (D 2+l)y  = (D - tan x) (D + tan x)y.  We may use one or the other according as g(x) has a S

real zero t or a pair of conjugate zeros .

Now suppose to the contrary that )I~~(A :x)  has more than one zero in 10,1) counting multi-

plicities. Then according to (4.3) and (4.7) , kn (x ; A)  has at least 2n zeros in L0,n) . Thus

g(x) S h(D) A (x; A )  has at least 2n - (n—i) = n + 1 zeros in (0 ,n ) ,  whence it follows that

there is at least one interval ( j .  j+ l) , 0 < j  < n where g(x) has at least two zeros . Since

h(D) is a differential operator with constant coefficient and A (x;X ) satisfies (4.3) , the

function gix) has at least two zeros in 10,1). However (6.1) implies that (D—a) (D-a)g 0

and our initial remark says that g(x) can have at most one zero in [0, 1). This contradic-

tion completes the proof.

If  
~n+l~~~ 

has only real zeros , we may proceed as before and use the fact that if

CD— a1
) (D-a 2)g = 0 (a~ , u2 real) , then g(x) has at most one zero in ( -‘s, ~~~~ This case is

proved by Micchelli ( [6] Corollary 2.2 , p. 210) .

Theorem 3 If the polynomial p~ ,~1(x) — I I (X— t
1

) is real and if lIm t11 < it (I = 0. 1~ n)

then for any fixed x € (0, 1), the polynomial IT n
(X; X )  given by (4 .7 )  has all its zeros real

and negative.

Moreover these zeros are simple and increasing functions of x a (0, 1), i.e.,

-

• 
(6.3) 1t ( X ~~( X ) J X )  = 0 , —

~~~ < X 1
(x) < ...< A (x) < 0, X~~(x) > 0

< ...< 
~~~~~~~~ 

< 0 are the zeros of fl (A ;0 ) . then A 1
(0) — — , X

1
( 0) — u 1_1~ j  =

and X ci) = 0, A
1

(l) = j  — l , . . . n — l.

—9—
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_Remark. If all the zeros t .  are real , Theorem 3 is proved in [6) p. 222. It is also shown

there that when T is real , the zeros of A (x;AIT) interlace the zeros of

A 1
( x ; A I T  — {t }). This fact leads to the useful information that each A .(x) is a strictly

decreasing function of each t .  For the special case T — (0, t , 2t , . .  ., nt }, t real the

monotonicity of A . as a function of t has interesting ramifications. It is related to

the problem of finding best bounds on the local mesh ratio of knots which will allow interpola-

tion by bounded splines to bounded data on the real line ((2], [6]). No such results are

known when T is complex with T = 5’.

When 5’ is real, another derivation of Theorem 3 is given by Schoenberg (91 which is

based upon the total positivity properties of 8—splines for cardinal L-splines and upon results

regarding the generating function of Polya frecuency functions. This method can be adapted to

S the case when T is complex and 5’ = ‘S as is shown below .

The proof of Theorem 3 follows the approach of Schoenberg 19] a]most verbatim. The

• difference rests On Lemma 4.

Proof. We shall use the following representation for ( 161 ‘. 222) .

(6.4)  1 1 ( X;x )  = (_ 1) n 

v~ O 
~~~~~~~~~

where Q
~+i (x) is the forward B-spiine with respect to the operator

(_ l) fl+lpn+i (_ D) = 11(D + t.) . - -

0

Since 
~
‘n+l~~°~ 

is also real and lIm (—t
1
) I < iT , Pn+i

(_D) has a Polya factorization. More

precisely

(6.5) 
~n+i~~

°1f = w~D(w~
’w~_1D) (w 1

1w0
D)(w

0
1f), w . > 0, Yj .

From a theorem of Karlin ((4] p. 527, Theorem 4.1), the sequence {Q~~1
Cv+l—x) } is a Polya

frequency sequence for all x € [0,1). It follows from a theorem of Schoenberg (Theorem 5.3

• p. 412 (4)) that 11 (A;x) has all its roots real and negative.

-10-
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- Inequality (6.3) (the simplicity of these zeros) follows from Lemma 4 on repeating the S
_

~~~~~~ reasoning in Schoenberg ((9] Lemma 2 and Theorem 3, p. 260).

• 
Remark. The result of Theorem 2 can be succintly summarized by saying that the map

x *A (x) where A(x) = A . (x) , x c  (j—l ,j), j  = i,...,n is a C~ m ap of (0,nj onto

- (_ ,0). The smoothness of this map follows because A~ (x;A) is a cardinal L—spline.

Corollary 1. If T T and if tIn t i  < iT , v 0, 1,... ,n, then for any complex number a

the roots of A~ (x;AIa + T) are eaA
l
(x),...,eaAn(x) where (A (x)}~ are the zeros of

A
~
(x;AIT) .

This corollary is an immediate consequence of Theoren 3 and follows easily on using the

c~~. identity

[a + t
0
, a + t

1
,...,a + t~ ] f ( t) — 1t0.....t~

]f(t+a)

and the representation (4.4) which yields
•HI

A (x;AIa + 5’) = ea~~~~~A Cx; e~~AIT )n n

Theorem 4. For any set A of n + 1 real numbers A < A c . • .c A with A - A < 2,T and
______  _______  — - 0 —  1 —  — n — m 0

with A. + A . independent of j (j  = 0, 1,...,n), the polynomial TI ( A ; x ~iA) has distinct
- -It - — 

~

- roots on the ray

i(A ÷A ) / 2
- (6.6) C—p c 0 n p > 0)

Moreover fl (A ;X J IA ) vanishes for some A e U if and only if x = 0 and n is even or

x — and n is odd and in each of these cases ll (A ;x iA) vanishes only for

- i-_f.. i(it+(A +A )/2)
(6.7) A = e  0 n

4

Proof. The first part of the theorem follows from corollary 1 and Theorem 3. since iA = a + T,
• A + A

- . 0 nwhere a — i  2 and
I

• ( X
0— A )  (A1—A l) (A —A 0)

2 2 ‘
~~~

•
~~~~
“ 2
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The second part follows from the observation that T = T = —T which implies, because of (4 .3)

and (4.6), that

An(4;_1IT) 0 for n odd, An
(0;_lIT) = 0 for n even

Corollary 2. Given any m real numbers with maxip i < it and data ( y }  of power

growth y ,  there is a unique cardinal L—spline S (x) of power growth y corresponding to the

differential operator D II (D2+1j~), satisfying
j=l -

S (V  + B) = V — 0, +1, +2 

provided 8 c (0,1). When B = 0, this result fails.

Proof. According to (61 , the cardinal L—spline interpolation problem above has a unique bound-

ed solution if and only if

fl~~ (A;8liA ) + 0, A = {±p
111 — 1,. ..,m} U {0}

for A € U. Since A satisfies the conditions of Theorem 4, the corollary is seen to follow
I

immediately from it.

Example 1. In Theorem 4, set A
~ 

(L+v )~~, 9. real , m l  < ~~~~
-. Then A (x;A) has distinct

zeros on the ray

+i(9. +
(—ce 2 lc > 0}

This case was proved by Tzimbalario ( 13] .  I - -

Example 2. 
• 
If we take A = v~~, with nfl c 2it in Theorem 4, we obtai n from the representa-

tion (4.4) with x = 0 that

(6.8) A (O;A) — [0, in , . . . , in~]
• c

t
_ A

4
has n — 1 distinct zeros on the ray {—~ exp (~~~ - ) l C ~~ 0 . The second part of Theorem 4 im— ‘1

plies that when n is odd , (6.8) will not vanish for A = -1, while for n even, (6.8) will

4 vanish f o r  A — —1 only when fl = 0. If we set e~~ = q, then for n + 0 an easy computa—

tion shows that A~ (O;_l) becomes R Ca) (excent for a non-zero factor) where

— 12—
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I N
R ( q) = 

~ 
(
~

) (—1) v —~~~--_ 
- -m 

V=0 q+1

Thus we get the result that R0(q) is not zero on the arc of the unit circle I z i  1 given

by arg q~ < when n is odd unless a + 1. When n is even, Rn
(Q) will vanish only

when ~ = 0 , i.e., q = 1. In (61 it was shown that when q is real, Rn (a) has exactly

n - 1 simple positive zeros occuring in reciprocal pairs. For the imnortance of R (q) in

f spu me interpolation see (2] and t6] .

7. Proof of Theorem 1. According to Lemma 3 and Theorem 4 (with A replaced by nA) , the

I.P is solvable when n is even and r + 0 or when n is odd and t + 4. In the exceptional

cases , i.e., n even and t = 0 or m odd and t — 4, the I.P is solvable if and only if

A + A. 0  n

(7 . 1) e 2 ~ 
~~~ + w~~, (v — 0, 1,. ..,k— l)

A + A
This implies that the only zero of f l ( A ;O I i uA i  on the unit circle, viz. exp(i 0

2 
mlu + iw) is

not equal to a root of unity . Since a = ~~~-, w e~~~, it follows from (7.1) that

(7.2)  A0 + A + k — 2v 4 0 (mmd 2k) , v = 0, l, . . . ,k—l .

If A 0 + A n + k is odd , (7 .2 )  is valid so that the I .P.  is solvable. This completes the Proof

of Theorem 1.

Proof of Theorem 2. If A
0 + A + k is even, we shall show that (2 .2)  fails Only for

= (k÷A 0+A )/2  = h (say) . Let us again verify what we saw earlier (see the proof of Lemma 2)

that if v = A r~ 
(7 .2 )  is equivalent to A - A + k ~ 0 (mod 2k) since A + A =

- n—r r r n—r - t
A
0 + A n~ This is obviously true since I X fl_r ~‘r~ 

< k—i.

If A r < v < A +1 for some r , then we have

A — A  + k < A  + A  + k — 2 v < A  — A  + kn—r— 1 r+l 0 n n—r r

Since A u ’s are < k, we get -~~~

l < A o + A n
+ k _ 2 V < 2k_ l

so that (7 .2 )  is true for A < V < A .r r+l

-13-
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If v > A , thenn

— k <  A + A  — k + 2  < A  + A + k — 2 V < A  — A  — 2 + k < k
0 n 0 n 0 n

Thus A + A + k - 2V 5 0 (mod 2k) if and only if A + A + k — 2V = 0. Thus if A + A + k
0 n 0 n 0 n

is even, there is exactly one V for which inequality (7.2) fails. From Leumma 3 and the pre—

ceding discussion it follows that S~ (~) = 0 if and only if i = h.

If S(z) € S satisfies (2.2), then by Lemma 1,

k-l
• S( z) = ~ c .S (z)

0

so that
k-l k—l

~ c .S . ( T ~w’~) = 
~ c.u’3S.(*) = j = 0, 1,...,k—l
j=0 ~

k-l
There fore c . S . ( *)  = 

~ 
from which Theorem 2 easily follows.

V 0

Remark. We do not know what happens if A .  + A0_1 is not independent of j. In that case

the above method does not seem to work .

8. Monosp lines and quadrature formulae.

Consider the quadrature formula

k-l
(8. 1) f f ( z ) d z  = ~ c . f ( w 3 ) + Rf

U

where the unit circle U is described counter—clockwise. The requirement that the remainder

Rf vanishes when f = z V 
~ 0, 1,... ,n, is equivalent to the relations

A k—l jA
(8.2) f z Vdz = 0 ~ c .w 

V
, V = 0, 1,.. .,n

U

We assume that n + 1 < k in which case there are k - n — 1 free parameters in (8.1) .

In order to bring out the connection of the quadrature formula (8.1) satisfying (8.2)

with the class of splines S, we introduce some differential operators. Set

-14-
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~~ — (A —A —1)
L~ f = D(z  V v—l 

f), V — 1, 2 ,....n

£
0f = D(z 0f)

I .t *f — z
_ (  _ A

~ _ 1_ l)
Df L~ f = z

_A
0Df, V 1, 2 ,...

Then
A + l  n

£ £ ....C z n = TI (A —A .+l)• n n—l 0 .
3=0

F We shall prove

Lemma 5. If

A +1n
(8. 3) K(z)  n 

z 
— S(z) , S(z)  c S

fl (An
_A

V+l)

and if f(z) E Cn+l(U) , then

k-l(8.4 ) f f(z)dz — ~ C . f ( w 3 ) + (_ 1) n+l f ~~~ £ C *...L *f dz
u j—0 3 U

Proof. It is easy to verify that

j+lk— l w — ( A  —A —1 )f K(z)(L
0
.C
1

...t f)(z)dz = (_ 1) n 
~ I (L~ _1~~~~0K)(z)z 

m n—l f ’ (z)dz
U ) 0  j

W

— (A —A 
— 

—1) 
.Since H(z) z n n 1 (C ...C K)(Z) has discontinuities at z (j 0, l,...,n—1),

the coefficients C~ in (8.4) are given by H(w~) — H ( w ~~~) .

Formula (8.4) establishes a correspondence between the function X (z) which we will call

• a A-monospline and quadrature formulae (8.1) satisfying (8.2).

A natural problem which now arises is to find a A-monospline which has least L -norm

1 < p < . We seek to minimize

(8.5) l Ix I l ~~~ 
= 

2w 
I~ Idz l

over all A -monosplines of order n. The auadrature formula which corresponds to a solution

—15—
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of (8.5) will be called an “optimal” quadrature formula.

We shall prove

Theorem 5. Let 1 < n + 1 < k. Among all cuadrature formulae of the form (8.1) which are

exact for I a 11A ’ an “optimal” quadrature formula is

k—i (A —n+1)j
(8.6) f f(z)dz = A1 ~ f(w3) + RI

U j=0

with

RI = (1)n+1 J K (z ) (C ...L f(z) )dz

where the kernel I(1(z) is given by

I(1(z) = 
n 

~ { r 
— A 1S (z)}, r (A +1) mod k

11Cr—A )
0 V

and A~ minimizes the integral 
S 

-

— Az
~~
Sr
(z) l~ de , z = elO

• 0

over all A a ~~~.

Proof. Let K(z) be any A -monospline . Set

i~(z) = 

~~~ 

W
irK(W tZ) .

Then K(z) is a A-monospline satisfying the functional equation

- r-K (W Z )  = W K ( z )  .

It is easy to see that II K II L < 1 K 1 ~ 
and thus in minimizing (8.5) it is sufficient to re—

• p p

strict ourselves to A—monosplines which are r—flowe~s.

According-to Lemma 1, we can write

K(z) = 
1 {z r — AS (z)} , A c I .

f l ( r—A ) 1’
0 V 

l6
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Using this equation the theorem easily follows.

Remark. When p = 2 it is a straightforward matter to compute A1. It should also be possible

to find A 1 when p 1, . In the case XV = V considered by Schoenberg (8J , Theorem 5

leads to a solution of a question raised at the end of his paper. • S

9. Conclusion.

It is of some interest to point out that Theorem 1 is only a sufficient condition for the

I.P to be uniauely solvable in the class S. It can be easily proved that if k is even,

= 1, A
0 

— 0, A 1 
= 1, A 2 — 4, then the number Nr of Lemma 3 given by

a
1

• N L (ks+r) (ks+r—l) (ks+r—4’ ‘

is not equal to zero. This is easily seen on rewriting

1N 
s~O 

(ks+r) (ks+r—l) (ks+r—4)

1 
—

-

— L (ks+k—r+4) (ks+k—r+1)(ks+k—r) 
— I

l 
— 12

s0

A comparison of the terms in I~ and 12 
shows that for 2r < k+2, I~ > 1

2 each term in

being greater than the corresponding term in 1~ Sim ilarly for 2r ~ k+2, I~ < I
2~ 

Thus the

only case to be checked is 2r = k+3 which cannot occur since k is even.

Thus although A 0 + A 2 + 2A 1, the criterion (4. 13) of Lemma 3 applies and the I.P is

uniquely solvable. It would be interesting to obtain a proof of Theorem 1 independent of the

• theory of Cardinal L—splines and to see if the conditioms on A can t e  further relaxed .
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